PREVIOUS YEAR QUESTION

If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength λ , then for 1.5 p momentum of the photoelectron, the wavelength of the light should be: (Assume kinetic energy of ejected photoelectron to be very high in comparison to work function)

- \triangle 1/2 λ
- $oldsymbol{\mathbb{B}}$ 3/4 λ
- 6 4/9 λ
- D 2/3 λ

Explanation

From photoelectric effect,

 $E = \phi + KE$

$$\frac{hc}{\lambda} = \phi + \frac{p^2}{2m}$$
(1)

Now when momentum = 1.5p then let wavelength = λ_1

$$\therefore \frac{hc}{\lambda_1} = \phi + \frac{(1.5p)^2}{2m}$$
(2)

Given,

kinetic energy(KE) of ejected photoelectron to be very high in comparison to work function(ϕ).

- \therefore We can neglect work function(ϕ).
- .: Equation (1) and (2) becomes,

$$\frac{hc}{\lambda} = \frac{p^2}{2m} \dots \dots \dots \dots \dots \dots (1)$$

$$\frac{hc}{\lambda_1} = \frac{(1.5p)^2}{2m}$$
(2)

Dividing (1) by (2) we get,

$$\frac{\lambda_1}{\lambda} = \frac{p^2}{(1.5p)^2}$$

$$\Rightarrow \frac{\lambda_1}{\lambda} = \frac{4}{9}$$